

# National University of Engineering (UNI)

School of Computer Science Syllabus 2026-I

#### 1. COURSE

AI263. Introduction to Machine Learning (Mandatory)

#### 2. GENERAL INFORMATION

2.1 Course : AI263. Introduction to Machine Learning

**2.2 Semester** :  $6^{th}$  Semester

**2.3** Credits : 4

2.4 Horas : 2 HT; 4 HP;
2.5 Duration of the period : 16 weeks
2.6 Type of course : Mandatory
2.7 Learning modality : Face to face

**2.8 Prerrequisites** : CS261-CS2023. Artificial Intelligence.  $(5^{th} \text{ Sem})$ 

#### 3. PROFESSORS

Meetings after coordination with the professor

#### 4. INTRODUCTION TO THE COURSE

This course introduces the fundamentals of machine learning, covering classical and modern algorithms for classification, regression, and clustering problems. It focuses on practical implementation using scikit-learn and TensorFlow, with applications in computer vision and natural language processing.

#### 5. GOALS

- Understand the mathematical principles behind ML algorithms.
- Implement complete ML pipelines with Python.
- Evaluate and optimize models using standard metrics.

#### 6. COMPETENCES

- 2) Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline. (Assessment)
- AG-C09) Solution Design and Development: Designs, implements, and evaluates solutions for complex computing problems. (Assessment)
- 6) Apply computer science theory and software development fundamentals to produce computing-based solutions. (Assessment)
- AG-C12) Applies computer science theory and software development fundamentals to produce computer-based solutions. (Assessment)
- 4) Recognize professional responsabilities and make informed judgments in computing practice based on legal and ethical principles. (Usage)
- AG-C02) Ethics: Applies ethical principles and commits to professional ethics and standards of computing practice. (Usage)

## 7. TOPICS

| Unit 1: ML Fundamentals (15 hours) Competences Expected: 6,AG-C12                                                                             |                                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Topics                                                                                                                                        | Learning Outcomes                                                                                                         |  |
| <ul> <li>Supervised vs unsupervised learning</li> <li>Overfitting and regularization</li> <li>Cross-validation and learning curves</li> </ul> | <ul> <li>Explain the bias-variance tradeoff [Familiarizarse]</li> <li>Implement k-fold cross-validation [Usar]</li> </ul> |  |
| Readings: [Bis06], [GBC16]                                                                                                                    |                                                                                                                           |  |

| Unit 2: Linear Models (15 hours) Competences Expected: 6,AG-C12                                                                 |                                                                                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                 |                                                                                                                         |  |
| <ul> <li>Linear and logistic regression</li> <li>Support Vector Machines (SVM)</li> <li>Linear discriminant analysis</li> </ul> | <ul> <li>Program linear models with scikit-learn [Usar]</li> <li>Interpret regression coefficients [Evaluar]</li> </ul> |  |
| Readings: [HTF09], [Mur12]                                                                                                      |                                                                                                                         |  |

| Unit 3: Ensembles and Trees (15 hours)                                                                                            |                                                                                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Competences Expected: 6,AG-C12                                                                                                    |                                                                                                                 |  |
| Topics                                                                                                                            | Learning Outcomes                                                                                               |  |
| <ul> <li>Decision trees and random forests</li> <li>Gradient Boosting (XGBoost, LightGBM)</li> <li>Stacking and voting</li> </ul> | <ul> <li>Optimize hyperparameters with GridSearch [Usar]</li> <li>Visualize decision trees [Evaluar]</li> </ul> |  |
| Readings: [HTF09], [Gér22]                                                                                                        |                                                                                                                 |  |

| Unit 4: Basic Neural Networks (15 hours) |                                               |  |
|------------------------------------------|-----------------------------------------------|--|
| Competences Expected: 6,AG-C12           |                                               |  |
| Topics                                   | Learning Outcomes                             |  |
|                                          |                                               |  |
| • Multilayer perceptrons (MLP)           | • Build simple neural networks [Usar]         |  |
| • Backpropagation and optimizers         | • Monitor training with TensorBoard [Evaluar] |  |
| • Introduction to Keras/TensorFlow       |                                               |  |
| Readings: [GBC16], [Cho21]               |                                               |  |

### 8. WORKPLAN

## 8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

# 8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

### 8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

### 9. EVALUATION SYSTEM

\*\*\*\*\*\* EVALUATION MISSING \*\*\*\*\*\*\*

## 10. BASIC BIBLIOGRAPHY

- [Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
- [HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. 2nd. Springer, 2009.
- [Mur12] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
- [GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
- [Cho21] François Chollet. Deep Learning with Python. 2nd. Manning, 2021.
- [Gér22] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. 3rd. O'Reilly, 2022.