

National University of Engineering (UNI)

School of Cybersecurity Syllabus 2024-II

1. COURSE

CS210. Algorithms and Data Structures (Mandatory)

2. GENERAL INFORMATION

2.1 Course : CS210. Algorithms and Data Structures

2.2 Semester : 4^{th} Semester.

2.3 Credits : 4

2.4 Horas : 2 HT; 4 HP;
2.5 Duration of the period : 16 weeks
2.6 Type of course : Mandatory
2.7 Learning modality : Face to face

2.8 Prerrequisites : CS113. Computer Science II. (3^{rd} Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

The theoretical foundation of all branches of computing rests on algorithms and data structures, this course will provide participants with an introduction to these topics, thus forming a basis that will serve for the following courses in the career.

5. GOALS

- Make the student understand the importance of algorithms for solving problems.
- Introduce the student to the field of application of data structures.

6. COMPETENCES

- 1) Analyze a complex computing problem and apply principles of computing and other relevant disciplines to identify solutions. (Usage)
- 2) Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline. (Usage)
- 6) Apply security principles and practices to maintain operations in the presence of risks and threats. (Usage)

7. TOPICS

Learning Outcomes
Learning Outcomes
 Acquire Dexterity to Perform Correct Implementation. [Usar] Develop knowledge to decide when it is better to use one implementation technique than another. [Usar]

Unit 2: Scatter Matrices (8 hours)		
Competences Expected:		
Topics	Learning Outcomes	
 Initial concepts. Dense Matrices Measurement of Efficiency in Time and Space Static scatter vs. dynamic matrix creation. Insert, search, and delete methods. 	Understand the use and implementation of scatter matrices.[Evaluar]	
Readings: [Cormen2009], [Fager2014], [Knuth97], [Knuth98]		

Competences Expected:		
Learning Outcomes		
Understand the basic functions of these complex structures in order to acquire the capacity for their implementation. [Evaluar]		

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

9. EVALUATION SYSTEM

******* EVALUATION MISSING *******

10. BASIC BIBLIOGRAPHY